ПAmIBIA UחIVERSITY
 OF SCIEПCE AПD TECHחOLOGY
 FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: O7BOSC	LEVEL: 7
COURSE NAME: QUANTUM PHYSICS	COURSE CODE: QPH 702S
SESSION: NOVEMBER 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof Dipti R. Sahu
MODERATOR:	Dr Habatwa V. Mweene

INSTRUCTIONS

1. Answer any five questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

Non-programmable Calculators

Question 1

Consider a particle whose normalized wave function is

$$
\begin{aligned}
\psi(x) & =2 \alpha \sqrt{\alpha} x \mathrm{e}^{-\alpha x} & & x>0 \\
& =0 & & x<0
\end{aligned}
$$

(a) For what value of x does $P(x)=/ \Psi(x) /^{2}$ peak?
(b) Calculate $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$.
(c) What is the probability that the particle is found between $x=0$ and $x=1 / \alpha$?

Question 2

2.1 State, giving your reasons, which of the following functions would make satisfactory Wave functions for all values of the variable x :
(i) $\mathrm{Ne}^{a x^{2}}$
(ii) $N e^{-a x^{2}}$
(iii) $\mathrm{Ne}^{-a x^{2}} /(3-x)$
(iv) $\mathrm{Ne}^{-a x}$
where N and a are constants.
2.2 In a region of space, a particle with mass m and with zero energy has a time independent
wave function

$$
\psi(x)=A x e^{-x^{2} / L^{2}}
$$

where A and L are constants. Determine the potential energy $U(x)$ of the particle.
2.3 Write the expression $\langle\Psi / \Psi\rangle=1$ as an explicit integral equation in three dimensions, assuming that $/ \Psi\rangle$ represents a wave function $\Psi(r)$. Suppose you have $/ \Psi\rangle=\sum_{n} C n \mid n>$ (where n in Cn as a subscript) where the $\{\mid n>\}$ is a complete set of orthonormal states. What condition does the above equation impose on the C_{n} ?

Question 3

3.1 Suppose that the operator corresponding to some observable is called Q. List two properties of this operator and/or of its eigenfunctions $/ n>$. The latter satisfy the equation $Q\left|n>=q_{n}\right| n>$. Suppose further that the quantum-mechanical state of a system is given by

$$
|\psi\rangle=\sum_{n} c_{n}|n\rangle
$$

with several of the expansion coefficients being non-zero ($C_{n} \neq 0$). If you were to make a single measurement of the observable Q, what would you get as a result?
3.2 The potential function for a problem is defined by:

$$
\mathrm{V}(\mathrm{x})= \begin{cases}0 ; & -a<x<a \\ \infty ; & |x|>a\end{cases}
$$

(a) Sketch the potential $V(x)$
(b) Find the solutions of the time-independent Schroedinger equation in the different regions
(c) Interpret the results.

Question 4

4.1 Find the probability that the electron in the ground-state of the H atom is less than a distance a from the nucleus.
4.2 Which pairs of operators commute in the set L^{2}, L_{x}, L_{y} and L_{z} ? How is this related to which quantities can be simultaneously determined with arbitrary precision?
4. 3 Evaluate the following commutators and state the consequences of the results.
(i) $\left[x, p_{x}\right]$ (ii) $\left[y, p_{z}\right]$, where the symbols have their usual meanings.

Question 5

5.1 Show explicitly that $S^{2}=\hbar^{2} s(s+1)$
5.2 Evaluate the matrix of L_{x} for $I=1$.
5.3 Show that for $|s\rangle=\cos (\vartheta / 2)|\uparrow\rangle+\exp (i \varphi) \sin (\vartheta / 2)|\downarrow\rangle$, we obtain

$$
\begin{equation*}
<s\left|\sigma^{\wedge}\right| s=i \sin \theta \cos \phi+\mathbf{j} \sin \theta \sin \phi+\mathbf{k} \cos \theta \tag{10}
\end{equation*}
$$

Question 6

6.1 A particle moves in the 1-dimensional potential $V(x)=\infty,|x|>a, V(x)=V_{0} \cos (\pi x / 2 a)$,
$|x| \leq a$, Calculate the ground-state energy to first order in perturbation theory. The unperturbed system energy and wave function is given by

$$
E^{(n)}=\frac{\pi^{2} \hbar^{2} n^{2}}{8 m a^{2}}, \quad u^{(n)}=\frac{1}{\sqrt{a}}\left\{\begin{array}{c}
\cos \\
\sin
\end{array}\right\} \frac{n \pi x}{2 a} ; \quad n\left\{\begin{array}{c}
\text { odd } \\
\text { even }
\end{array}\right\}
$$

6.2 Consider a charged particle in the 1D harmonic oscillator potential. Suppose the particle is placed in a weak, uniform electric field. Treat the electric field as a small perturbation and obtain the first order corrections to the harmonic oscillator energy eigenvalues.

Useful Standard Integrals
$\int_{0}^{\infty} x^{n} e^{-x} d x=n!\quad \int_{-\infty}^{\infty} \mathrm{e}^{-y^{2}} \mathrm{dy}=\sqrt{\pi} \quad \int_{-\infty}^{\infty} y^{n} \mathrm{e}^{-y^{2}} \mathrm{dy}=\frac{\sqrt{\pi}}{\mathrm{n}} ; \mathrm{n}$ even $\int_{-\infty}^{\infty} \mathrm{e}^{-\alpha y^{2}} \mathrm{e}^{-\beta y} \mathrm{dy}=\left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} e^{\frac{\beta^{2}}{4 \alpha}}$
$0 ; \mathrm{n}$ odd

